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Abstract

We describe experimental results to demonstrate the wide-ranging computational ability of quasiperiodic oscillators built
from rings of differentiating Schmitt triggers. We describe a theoretical model based on necklace functions to compute
the number of states supportable by a ring circuit of a given size. Experimental results are presented to demonstrate that
probabilistic state machines can be built from these ring circuits. Other experimental results are given to demonstrate that the
rings can model spiking neural network circuits.
© 2003 Elsevier B.V. All rights reserved.
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1. Practical and theoretical foundations

Hasslacher and Tilden[1] describe a special type
of ring oscillator – called a nervous network – and
describe its use in controlling the dynamics of walk-
ing robots (seeFig. 1). They describe that the circuit
cannot only control the gait dynamics but that it
also assists the robot in adapting to a rugged land-
scape (a fractal landscape). Obviously this circuit
is a primitive analog computer taking inputs from
the external world and transforming those signals to
electrical pulses which drive motors controlling the
gait of a robot. There are several overall variations
in which the input and output signals are fed into
and out of the main ‘ring-core’ and these have been
described by Hasslacher and Tilden[1]. Here we
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focus our attention on the ‘ring-core’ and demon-
strate how these ring circuits can be used as analog
computational machines. We describe the micrody-
namics, or the ‘bit-level’ dynamics, of these circuits,
and we describe some theoretical and simulation
results.

1.1. The Nv-neuron

The most popular artificial neuron is a spiking
neuron. When it receives voltage signals it produces
a pulse train. As the voltage increases the frequency
or firing rate increases.Fig. 2(A) shows a simpli-
fied neuron of the type investigated by Murray and
Tarassenko[9] among others. As seen from the graph,
the input voltage increases and the output frequency
also increases. Basically it is a voltage-controlled os-
cillator. TheRC components determine the frequency
behavior.
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Fig. 1. Simple insect-like robotic organism – a living machine.

Fig. 2(B) shows a second type of neuron that also
acts as a voltage-controlled oscillator, but requires a
threshold and saturates. The sigmoidal curve approx-
imates the dynamics of biological neurons. The op-
erational voltage range for which the neuron fires is
a narrow voltage band given by the threshold of the
Schmitt trigger. Below some input voltage-threshold
the neuron is not firing. Above a threshold the neuron
will saturate and not increase its firing rate. The fre-
quency at the inflection point of the sigmoid is given
by theRC time constant. The Schmitt trigger is the key
component making up this neuron. It is also the key
component in another type of artificial neuron called
the nervous neuron (Nv-neuron).

The overall focus of this paper is to describe the
computational dynamics of small networks built from

Fig. 2. Two artificial neurons compared in this study.

the Nv-neuron. The basic neuron circuit has been de-
scribed by Tilden[14]. We made certain modifica-
tions to this circuit to enable us to experiment with it
in larger systems and make quick changes in the ba-
sic architecture of the computational nodes. The basic
circuit is an inverting Schmitt trigger with a differen-
tiating input. Our circuits were built with the NAND
Schmitt trigger, like those used in the circuits ofFig. 2.
This allows us to quickly modify the neuron architec-
ture with a minimum of disruption to the network. A
pure inverting Schmitt trigger could be substituted for
the NAND Schmitt trigger.

Fig. 3 shows the basic Nv-neuron. The differenti-
ating circuit is well known and Horowitz and Hill[5]
Jones[6] are excellent discussions of the behavior.
Since the circuit uses an inverting device, when the
input to the neuron (position A, inFig. 3) is high the
output will be low, and the neuron is ‘firing’. When
node A is low the neuron is in a quiescent state and
the output is high. This is shown in the figure as the
input signal and the output signal. The input to the
neuron can be expressed as

Vin(t) = Vh[−u(t − t0) + u(t − t1)], (1)

where Vh is the high-output-voltage andu(t) is the
step function given as

u(t) =
{

0 t < 0 ,

1 t ≥ 0.
(2)

The behavior at node A is much more interesting.
Mathematically it is given by

VA(t) =




0 t < t0,

−Vh

[
−exp(−(t − t0))

RC

]
t1 > t > t0,

[Vh + VA(t−1 )]
exp(−(t − t1))

RC
t > t1.

(3)

While the input is high the voltage at node A will be
low (zero volts). If the input goes low, the capacitor
initially follows the leading edge of the input (nega-
tive) and discharges during the timet1−t0, whereupon
it forces node A again to zero volts. So node A goes
negative and discharges until the voltage is zero. If the
input again goes high the capacitor will again initially
follow the input, but will start to charge. The charging
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Fig. 3. The basic circuit of the Nv-neuron and its input/output response.

time is of course given by the product of the capacitor
value (F) and the resistor value (
) τ = RC. Through-
out the paper we will simply refer to this as tau.

The output of the circuit,Vout, is given by influ-
ences from the above dynamics at the input to the
Schmitt trigger (node A) but also by the dynamics
of the Schmitt trigger itself. As shown inFig. 4, the
Schmitt trigger exhibits a threshold and hysteresis in
the voltage input/output curve. This means the output
is dependent not only on the input but also the recent
history input. The neuron fires only when the input
goes from a low to high transition and when the volt-
age at node A reachesVthh. It then fires for a time, tau,
determined by theRC components. When the voltage
at node A exceeds the high threshold,Vthh, the output
is driven low. When the voltage at node A drops be-
low the low threshold,Vthl, the output is driven high
again. The neuron will fire while the voltage at node
A is between the high threshold and the low threshold.
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Fig. 4. Input/output hysteresis curve for the Schmitt trigger.

The following relation gives the firing time of the
neuron:

t2 − t1 = −RC ln

[
Vthl

Vh(1 − exp(−(t1 − t0)/RC))

]
.

(4)

This equation says that the firing time is dependent
on the low threshold voltage, the magnitude of the
input, and theRC constant. So a long duration in-
put pulse will cause a long output pulse and a short
input pulse will cause a short output pulse. This is
really an important point. Shortduration pulses will
propagate through a network faster than long duration
pulses. However, if the frequency of input is too high
(relative to tau) the neuron stays in the resting state
(logic high) and does not fire (logic low). In practice
the variation betweenRC components will often re-
sult in-phase noise and the oscillator will not enter
an oscillator death state. But oscillator death can be
observed under certain high frequency conditions de-
pending on tau. The actual relation between oscillator
death caused by high frequency and tau has not been
measured.

In summary the Nv-neuron has some desirable prop-
erties not observed in networks built with inverters.
First the Nv-neuron output pulse has a variable dura-
tion proportional to the input pulse. Second the end of
the input pulse triggers the output; so shorter pulses
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Fig. 5. Classical ring oscillator built from CMOS inverters.

will travel faster in the ring. Third there is a maxi-
mum length of the output pulse, and fourth if the in-
put pulse is too short relative to theRC time constant
than it will not trigger an output pulse. This also re-
sults in the observation that trailing pulses that may be
too short will not cause an output. This results in the
device entering a ‘refractory’ period. How this analog
behavior relates to real neurons is a question for further
study.

1.2. Ring oscillators

The analog processing elements onboard our au-
tonomous robots are rings of the Nv-neurons. As a
baseline to our study of rings of Nv-neurons we will
first examine the behavior of ring oscillators built from
CMOS 4049 inverters. By definition an oscillator is
an unstable circuit, or at best, a metastable circuit.
When constructing oscillators from CMOS inverters,
the charge time, tau, is determined by the physics of
the transistors making up the inverter.Fig. 5 shows
the relevant circuit and an actual oscilloscope trace for

Fig. 6. The experimental Nv-neuron, and the rapid prototype breadboard.

all three nodes in a 4049 ring circuit. If this was an
ideal circuit built from ideal inverters with instanta-
neous time response then we could expect that when
one pulse is high the next pulse in line would be low.
So ideally we would expect two adjacent inverters to
be oscillating 180◦ out-of-phase. But as seen in the fig-
ure, these real-world inverters are in-phase a fraction
of the time. Furthermore, the degree of out-of-phase
change does not appear to be constant (though that is
not indicated in the figure), and is related to the phase
noise in the ring oscillator.

Rings of the Nv-neuron (seeFig. 6) oscillate. Any
number of neurons (1, 2, . . . , N) can be connected into
a ring configuration and obtain oscillations. In general,
older and slower chip types (40XX) can be used to
build Nv-ring oscillators, because the threshold input
voltage is wider. The LS04 is fast and does not have a
wide threshold voltage. The HCT240 has a wide input
voltage and is fast. However, it tends to generate more
phase noise than the 40XX chips. So all our studies
were done with the 40XX family, and in particular the
4093.
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Besides the main Nv-components, shown inFig. 6,
there are other components that enabled input and out-
put without disturbing pulse trains in the networks.
The diodes are used to buffer signals into and out of
the Nv-networks, and prevent theRC waveform at in-
put (point A inFig. 3) from being clipped atVh+0.7 V.
The 7404, the 300
 current limiting resistor and the
LED allows observations of the pulsing at each node.
Sixteen nodes like this were wired onto the circuit
board shown inFig. 6 and a small solder-less bread-
board was used for quick configuration of various
types of networks. The switch shown in the schematic
diagram was part of a bank of DIP switches, and the
diodes were all connected to one pushbutton switch.
The DIP switches allowed presetting the input for each
node and the pushbutton switch enabled and then al-
lowed the network to settle to some limit-cycle or at-
tractor point.

1.3. Nv-rings and complexity

In this section we will briefly review some ear-
lier papers describing the dynamics of Nv-networks
[1,2,13]. This will be followed by a discussion of to-
tient functions and necklace machines and how they
model the dynamics of Nv-rings.

Still and Tilden[13] describe in detail how pulses
from the Nv-ring drive the leg dynamics for small
walking robots. In their 1995 paper Hasslacher and
Tilden describe, at a rather high-level of abstraction,
the dynamics for several sizes of Nv-rings, and de-
scribe how input disturbances (e.g. pulses from an
antenna) automatically change the gait dynamics of
the robot. But more interesting is feedback from
torque sensors on the motors driving the legs. When
signals from the torque sensors enter the Nv-ring
they not only disturb the gait dynamics, but they
disturb it in such a way as to essentially mimic the
landscape the robot is walking on. If the landscape
is particularly rugged it will automatically adapt to
this landscape. If the robot is attempting to walk
up a sand hill it will automatically adjust its gait
accordingly to keep from slipping. None of the cog-
nitive behavior is the result of A/D conversion and
digital processing (more on this later). This cogni-
tive behavior comes about essentially for free from
the rich input/output dynamics of the Nv-rings and
Nv-networks. The neural core is not only the central

pattern generator for the robot, but also the cognitive
processor.

Because of the memory effect of hysteresis in the
Schmitt triggers the robot essentially builds up, in
a short-term memory, a dynamic model, or internal
representation, of the world. As we will see later,
with larger rings more complex pulse patterns are sus-
tainable. And this suggests that complex arrays of
Nv-rings could be used to build more advanced brains
for robots. None of these systems require program-
ming in the conventional sense.

One of the goals of our research is to define the
limits and capabilities for small networks, in order
to build a ‘library’ of ‘components’ to build biomor-
phic robotic brains. The computational elements in
networks and arrays of Nv-rings arethe rings. The
individual Nv-neurons are only components that build
up the computational elements – the rings themselves
are the computational elements for networks. For
the long-term goal of building brains, we must keep
in mind that highly connected networks will not re-
sult in complex behavior but rather oscillator death.
Like all complex networks, the connectivity must be
near a threshold – at the edge of chaos – in order
to exploit emergent behavior. We need to define that
threshold, which we know is related to theRC time
constant. Once we have that threshold and a ‘library’
of ‘components’ we will be able to use a genetic
algorithm to design complex networks for specific
behaviors. The adaptability of networks of these rings
is not yet known and needs to be explored.

Continuing with the review by Hasslacher and
Tilden [1], if we represent 1s as ‘processes’ in the
Nv-rings thenFig. 7 shows several distinct process
patterns for small rings. Individual processes will re-
main independent of each other as long as they are
separated by two or more tau – the time constant for
the neurons. In other words they must be separated by
two neurons. Because the circuits are rings, patterns
such as 100100, 010010, and 001001 are identical. In
the following we convert the lowest Boolean equiv-
alent to decimal and use that decimal number for
further discussions.

The pattern, for example, 101000, will cycle in syn-
chronization forever provided one neuron in the chain
has a shorter tau than the others. If the tau are nearly
equal, then they will mode lock into 100100. In a sat-
urated pattern, 101010, the entire process chain ro-
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Fig. 7. Some distinct process patterns of small Nv-rings and the relation between the ring size and the number of distinct process patterns.

tates at the speed of the shortest Nv-neuron. This is
determined by the lowest tau and is given inEq. (4).
As more processes are introduced to an unbalanced
Nv-ring, they will travel faster. In the next section we
will see results for a number of these.

The number of distinct processes sustainable in a
loop of a given size (1, 2, 3, 4, . . . , N) follows the se-
quence (1, 2, 2, 3, 3, 5, 5, 8, 10, 15, 19, 31, 41, 64, 94,
143, . . . ). This sequence follows a function known as
a 2-ary necklace [10,15–17]and is given by

N(n, 2) = 1

n

ν(n)∑
i=1

φ(di) [F(di − 1) + F(di + 1)] , (5)

wheredi are the divisors ofn with d1 ≡ 1, d2, . . . ,

dν(n) = n; ν(n) is the number of divisors ofn; φ(n) the
totient function, andF(·) the Fibonacci sequence. The
totient function is also called the Euler totient function
and is given as the number of positive integers less
thann, which are relatively prime ton [16,17].

2. Experimental results

In this section we will discuss the dynamics of sim-
ple Nv-rings and we will discuss experimental results
for coupling between small rings and some observa-
tions on a large ring of 48-nodes.

2.1. Basic dynamics

The apparatus shown inFig. 6was used for numer-
ous experiments in exploring the dynamics of small

rings. In addition we built two other systems to enable
us to explore coupling of rings and pulse storage in
larger rings, and these will be discussed subsequently.
Our first experiments were to confirm the theoreti-
cal conjectures described above. We wired rings with
4-, 5- and 6-nodes to which we initialized the nodes
and allowed the oscillator to settle to a limit-cycle.
Each ring was initialized with binary equivalents of
0, 1, . . . , up to the maximum for that ring (e.g. 15,
31, and 63 for 4-, 5-, and 6-nodes, respectively). After
letting the system settle to an attractor or limit-cycle,
the output of each node was captured on a digital os-
cilloscope.Fig. 8 shows the results. These graphs are
read from left to right and top to bottom. The first
graph of each set is initialization of 0, the second is
initialization of 1, etc.

The first observation fromFig. 8 is that the ring
with 5-nodes clearly looks chaotic and likely does not
support the necklace theory. To understand the results
for the 4- and 6-node rings it is necessary to first recall
from Fig. 3 that a neuron fires when the output goes
from high to low. So it is clear fromFig. 8 that the 4-
node exhibits essentially only two limit-cycles (0101,
0001). (Limit-cycles are regular repeating patterns.)
Of course (0000) is also a stable state. So the necklace
theory clearly supports the observations for this ring.

The 6-node ring supports four distinct limit-cycles
(010101, 100100, 101000, and 100000) and one
attractor point (0000). This is, again, in complete
agreement with the necklace theory.

Because of space limitations we have not presented
the results for 8-nodes, but the necklace theory again
is supported. But at 5-nodes (shown inFig. 8) and
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Fig. 8. Scope tracing for each node in 4-, 5-, and 6-node ring experiments.

7-nodes (not shown) the limit-cycles appear to be
“chaotic”.

In order to test if the 5-node data stream is random
we compared it with a random data stream of 0s and 1s.
We generated a random 0, 1 stream of the same length
as the data stream. Then we computed the run-length
for 0s and 1s for both the random stream and the
5-node data stream, and compared the autocorrelation
function for these two time streams.

The autocorrelation function (ACF) is easily de-
scribed. ConsiderN observations of a discrete time
series. We can formN −1 pairs of observations of the
run-length of the type(z1, z2), . . . , (zN−1, zN). The
correlation coefficient can be written by reading the
first observation in each pair as another variable. We
can write the autocorrelation function as

ρk = Cov(Zt, Zt+k)√
Var(Zt − Ẑt)

√
Var(Zt+k − Ẑt+k)

, (6)

where Cov is the covariance and Var is the variance
between two samples in time.

As seen inFig. 9, the autocorrelation is significantly
different for each of these time streams. The random
and 5-node data show similar behavior to time lag of
about 25 after that the 5-node time stream shows in-
creased correlation from about lag 25 to 32. In this
lag-region the maximum amplitude of the correlation
is 0.25. A correlation of 0.25 is significant albeit not
large. We can conclude that the 5-node ring is not ran-
dom but we cannot conclude that the 5-node is chaotic
(deterministic chaos). It remains to be determined how
other odd numbers of nodes will behave in ring con-
figurations.

Naturally, in order to use these Nv-rings as com-
putational elements in larger networks and arrays
we must map their input/output behavior.Fig. 10
shows the I/O behavior for the 4-, 6-, 8- and 10-node
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Fig. 9. ACF plots for 5-node Nv-ring and random. The lag represents the time–distance for correlation.

Nv-rings. The numbers are all in decimal equivalents
(or deceq). Considering the necklace function, and
Fig. 7, we can work out the stable limit-cycles for
any size ring and of course we can write that as a
smallest decimal equivalent. Examining the 4-node
machine attractor diagram ofFig. 10 there are two
stable limit-cycles (1, 5) and one attractor point (0).
The figure shows the effects from initializing the
machine with any state and then shows the attracting
limit-cycle. For example, initializing with (0, 3, 4, 7,
9, 11, 12, 13, 14, 15) will result in the 4-node ma-
chine settling to the (1) limit-cycle; while initializing
with (1, 2, 6, 8, 10, 5) will result in it settling to the
(5) limit-cycle. Of significance is that many of the
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Fig. 10. Input/output behavior (attractor diagrams) for the 4-, 6-, 8-, and 10-node Nv-rings.

unstable initializations settle to one of the attracting
limit-cycles. But also note that some of the initial-
izations at a ‘stable’ limit-cycle settle to a different
limit-cycle. We see that initialization (1) settles to (5)
and (5) settles to (5). Limit-cycle (5) for the 4-node
machine is saturated with the maximum number of
processes.

Fig. 10also shows the attractor diagrams for the 6-,
8- and 10-node machines without the leaf nodes – the
outer most nodes that feed into other nodes. Only the
‘stable’ limit-cycles are shown and the effects from
initialization by these limit-cycles. In each case one of
the strongest attractors is the saturated limit-cycle. In
the 6-node machine limit-cycles (9) and (21) couple
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together as a super oscillator, in this case a two-cycle.
And the 10-node machine limit-cycles (73), (165) and
(341) couple together as a super-three-cycle. Larger
systems exhibit even more complex dynamics.

We should add that the ‘states’ in these attractor
diagrams are individually stable limit-cycles. But
when they receive some noise (perhaps phase noise)
they will jump to the indicated state with some prob-
ability. We have not determined that probability.
So it should be realized that each of the attractor
diagrams inFig. 10 should have a probability at-
tached to the edges in the attractor networks. Con-
sequently a realistic model for these machines is a
bounded probabilistic state machine. Of course this
probability must be measured for intelligently ex-
ploiting these machines for computation. Once we
have precise measurements on the probability it may
be possible to simulate them with hidden Markov
models.

2.2. Coupling experiments

Fig. 11 shows a system with rings of 4-, 6- and
8-nodes. This was designed to allow us to couple the
rings through diodes and to send external pulse trains

Fig. 11. Prototype circuit to study coupling, schematic diagram of connectivity for one experiment, and oscilloscope trace for one experiment.

into the rings to study the dynamics. All the connec-
tions were made through (3N666) diodes between the
input/output points shown in the schematic diagram in
Fig. 6. The system was designed to allow us to con-
nect, via the DIP switches, the three rings in any linear
chain and to enter external pulse trains into any of the
rings, via a diode and a BNC connector. In addition,
we could monitor the output of any of the rings with
an oscilloscope connected to a BNC connector again
via a diode. Though physically larger than the capac-
itors shown inFig. 6, the capacitors were the same
value, 0.01uF. TheRC components were mounted on
DIP headers to allow quick changes in the tau for the
nodes.

Though we did numerous coupling experiments,
we will discuss only a small number of them here.
In one experiment, we connected the 4- and 6-node
ring to feed into the 8-node ring. All the rings were
essentially running at their ‘power-on’ limit-cycle.
There are three signals traces shown inFig. 11. The
first upper trace is the pulses coming out of the
6-node ring. The middle trace is the pulses out of
the 4-node ring and the bottom trace shows the in-
teraction between the 4-, 6- and 8-node within the
8-node ring. Essentially the 4- and 6-node rings are
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Fig. 12. Results from external pulse injection and Boolean equiv-
alent.

180◦ out of phase. The bottom trace shows pulses
of varying widths depending on the constructive and
destructive interference among the three pulse trains.
The same pattern is repeated over and over. Though
the figure only shows one period of the repeated
signal.

In another series of experiments we injected exter-
nal pulse trains into the rings and observed the results.
When injecting pulse trains into the Nv-rings it is im-
portant to remember that above a frequency near 1/tau
the oscillator will settle to a deep attractor (00000. . . ).
If the frequency is too high, with respect to the tau
the neuron will stay in the resting state and remain in
logic high.

In one set of experiments, using the same connectiv-
ity as the previous experiment (i.e. 4-node→ 8-node,
6-node→ 8-node) we also injected pulses into the
6-node ring (or 4-node ring) and observed the effects
in the 8-node ring. Varying the injected frequency (po-
sition E or F inFig. 11) and allowing the other rings to
run freely, we observed the dynamics (at positions I, H,
and G, respectively, seeFig. 11) shown inFig. 12. The
pulses were monitored at position H. The figure shows
the results as if it was a truth table and the Boolean
equivalent circuit. In other words, the figure shows that
we can construct Boolean logic circuits with from the
constructive and destructive interference of pulses.

Using the connectivity shown inFig. 11we set out
to explore the interference of pulses in rings. We let
the 4-node ring run freely and connected it to feed into
the 8-node ring. We also connected the 6-node ring
to feed into the 8-node ring. However rather than let
the 6-node ring run freely we injected external pulses
into it. If the external pulse train was higher than 8 Hz
it resulted in oscillator death. In this case the 6- and
8-node rings stabilized to (000000) and (00000000),

respectively. This occurs when the Nv-neurons satu-
rate and stay in the logic high state – essentially a
resting state. In practice it is quite possible to useRC
components to produce faster oscillators. We limited
our study to this range since the robots were operating
at these frequencies – the walking speed.

Though the nodes within the rings are differentia-
tors, when the rings are coupled together with resistors
the rings act as integrators. This allows us to essen-
tially assemble networks of integrators like the spik-
ing neurons described by Maas and Bishop[7]. But
unlike the classical spiking neuron, our Nv-rings are
pulse train generators and frequency controlled oscil-
lators. So networks of the Nv-rings can be assembled
for spike-train processing. The networks, or arrays,
of Nv-rings are essentially hybrid computers. Analog
information can be coded as frequency of pulses and
time between pulse trains. The presence or absence
of pulses represent digital information processing and
therefore provides some robustness to noise. This
hybrid computational approach has been described
at length by Sarpeshkar[11] and Sarpeshkar and
O’Halloran [12] with respect to spiking neurons and
carries over to computational networks of Nv-rings.

However, unlike the model systems described by
Sarpeshkar et al. and Maas and Bishop[7] our system
is slightly more complicated in that arrays of Nv-rings
would essentially be processing whole trains of spikes.
So the time information imbedded in the spike-train
itself (the gaps between pulse packets and the fre-
quency of the pulse packet) is also important. In order
to observe some of this computation we coupled two
6-node rings together as shown inFig. 13. Our results
are shown inFig. 14.

Each of the small graphs shown inFig. 14 is the
result of capturing the trace from each node in each
ring on a digital oscilloscope. The experiments were
started by first initializing ring number 1, the driving
ring, with (000001), and initializing ring number 2 by
a decimal equivalent exactly like the graphs shown in
Fig. 8. Like the previous set of graphs (Fig. 8) the
upper-most left graph is the result of initializing ring
number 2 with zero. The graph to its right was initial-
ized with 1, etc. for the other graphs, consecutively
reading across and down.

Each individual graph shows 16 oscilloscope traces.
The bottom eight traces, in each graph, show the
output for each of the six nodes in ring number 1.
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Fig. 13. Schematic diagram of coupling of two 6-node Nv-rings.

In addition it shows two additional traces that are
simply dummy lines from the graphics processing.
The upper set of eight traces is from the six nodes
in ring number 2 and again two dummy lines. In
each experiment ring number 1 was initialized with
(000001). The observed effects are from coupling
with a 1 M resistor as shown in the schematic dia-
gram inFig. 13. As could be expected the rings affect
each other and the dynamics is detailed in the graphs
of Fig. 14. Constructive and destructive interference
effects are clearly seen. Also seen in this figure is the
6-node, two-cycle suggested inFig. 10 between (9)
and (21).

With a resistor connection link between the two
Nv-rings (seeFig. 13) there are three possible cou-
pling conditions we call: subcritical, critical and su-
percoupled. Consider the resistor (Rb) to ground in
the individual differentiators within the loops. If the
loops have, essentially identically components each
loop, when not coupled, will behave essentially the
same way. Now when coupling them with a resistor
(Rc) we can get different types of behavior depending
on the relation between Rb and Rc. If Rc< Rb (the
condition we used) we will have subcritical coupling.
As can be seen inFig. 14processes are preserved in
some cases but in many cases the loops saturate to the
maximum decimal equivalent. This is exactly what we
also observed in the attractor diagram ofFig. 10. The
results shown inFig. 14are the results of a subcritical
coupling (Rb= 5.6 M, Rc= 1 M).

Critical coupling is where Rc= Rb. In this case
processes are preserved but fall into ‘traps’ and can
stay essentially in that limit-cycle forever unless per-
turbed by another process or an external signal. Loops
of critically coupled Nv-rings can be used as counters,
gates, latches, and shift registers. But in large arrays
the stability is marginal; as the rings acquire more and
more pulses they tend to saturate (again as shown in
Fig. 10). Because of space limitations we do not show
results from critical coupling. This will be a key ele-
ment in a later publication.

The third condition, supercoupling occurs when
Rc > Rb. Here processes (e.g. patterns) can be cre-
ated and destroyed, and there are only a few stable
topologies that can support these phenomena. Arrays
of supercoupled Nv-rings need to have an odd num-
ber of loops to stabilize dying/saturating processes.
Again this will be the focus in a later publication. An
interesting observation is that, while Nv-rings act in-
ternally as differentiators to the signals, when coupled
into loops they act as integrators to the signals.

2.3. Threshold experiments on a large ring

We built a large Nv-ring of 48-nodes. Our rationale
in using such a large ring is that we could actually
inject small pulse trains into the ring and more care-
fully observe the dynamics. Though each node had
the sameRC values (tau∼ 70 Hz), subtle variations
between them resulted in short duration pulses at
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Fig. 14. Two-ring coupling experiment (see text for discussion).
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several nodes. As the pulse train traveled around the
loop, the short duration pulses dominated the dy-
namics and caused interference with other slightly
longer duration pulses and with the phase noise. The
end result was that the pulse train transformed itself
into a stable pulse train able to continuously cir-
cle around the Nv-ring. For example in the 48-node
ring the following would be a stable pulse train
(000000000000000000000000000000000001010 101
010101). Many other possibilities exist. By the neck-
lace function there are an enormous number of stable
limit-cycles or states possible.

Hopfield [3] and Hopfield and Hertz[4] suggested
that a subthreshold neural cell potential might always
be present as an oscillation of some frequency. More
recently this has been also described in some detail
by Gerstner[18]. If a neuron receives a pulsing or si-
nusoidal input in addition to some, perhaps sinusoidal
(or otherwise) subthreshold input, then a neuron may
fire only at some threshold value or when the input is
in-phase with the subthreshold oscillations. From the
behavior of the Nv-neurons outlined inEqs. (3) and
(4) it should be obvious that we can emulate the same
type of behavior in our Nv-rings. To test this conjec-
ture we applied a d.c.-offset voltage and an a.c. sig-
nal to the ring of 48-nodes. The results are shown in
Fig. 15. The first figure shows the effects from 1.0 V
offset and a 25 Hz 1.3 V peak-to-peak sine wave signal
as input to the ring. The second shows the effects of
1.0 V offset with an a.c.-modulated signal of 100 Hz
carrier wave and 15 Hz modulations. In both cases the

Fig. 15. Experimental results demonstrating threshold behavior.

neurons in the Nv-ring fire during the same phase in
the a.c. signal. This is exactly the same type of behav-
ior described by Hopfield et al. for integrate and fire
neurons.

3. Results and discussion

In the first part of the paper we focused on the
behavior of Nv-neuron circuits. Several important
points were described. When the neuron is in the
resting state, it is logic high. When the neuron in-
put goes from high to low logic there will be no
response on the output. But during this time the ca-
pacitor will charge. When the capacitor is charged
it will produce a spike at the input to the inverting
Schmitt trigger. At some threshold in that spike (de-
pending on the type of logic utilized) it will force
the capacitor to discharge and induce logic low at
the output of the neuron. At this point the neuron
is firing. The pulse width will be determined by the
discharge time of the capacitor. When the capacitor
has discharged, the neuron output will again go to
logic high and return to a resting state. As a conse-
quence of this behavior, short duration pulses will
propagate through a network or ring faster than long
duration pulses. So the neuron with the shortest tau
will have a significant impact on the overall network
or ring dynamics. In the case of rings these short
duration pulses will interfere with longer duration
pulses and produce phase noise that will eventu-
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ally result in the ring circuit settling to a stable
limit-cycle. But new pulses injected into the ring can
upset this limit-cycle and force the dynamics to a new
limit-cycle.

We found that the necklace function adequately de-
scribes the dynamics of rings of even numbers of
Nv-neurons. The necklace theory is not supported by
rings of odd numbers of Nv-neurons. This non-support
is likely due to typical phase noise generated in ring
oscillators of odd numbers of nodes.

The full dynamics has been explicitly described for
the 4-, 5- and 6-node Nv-rings. In addition we have
described the attractor diagrams (Fig. 10) for 4-, 6-,
8- and 10-node machines. The attractor diagrams rep-
resent the limit-cycles for different initial conditions.
Except for the leaf-nodes in the diagrams the indi-
cated limit-cycles are stable unless perturbed by ex-
ternal pulses. As the size of the rings increase we find
that the perturbations can result in further limit-cycles.
For example, a 10-node Nv-ring will oscillate be-
tween the three cycle (73–165–341) but only when
perturbed, will it change to a new limit-cycle within
this super-cycle. The probability of change has not
been measured, but from our observations it is clear
that probabilistic automata could be used to model the
dynamics of larger systems.

Looking at the attractor diagrams we could begin
to assemble larger systems with more complex dy-
namics. A 6- and 8-node machine could be coupled
together such that when the 6-node machine enters
state (9) or (21) it will force the 8-node machine to
enter state (85). If this was further connected to a
10-node machine it could force it to then enter state
(341).

These systems can also be utilized as hybrid
analog-digital information processors. If we initialize
the 4-node machine with (0, 3, 4, 7, 9, 11, 12, 13,
14, 15) it will settle to the limit-cycle (1) and if we
initialize the same machine with (1, 2, 6, 8, 10) it will
settle to the limit-cycle (5). Unlike the limit-cycle to
limit-cycle transitions, these transitions do not require
perturbations so the transition probability is 1. Each
limit-cycle is metastable. In the 6-node machine, for
example, the limit-cycle (1) may be the stable state but
reinitializing or injecting pulses will not necessarily
force it to state (21). It may in fact go to state (9) but
only via state (21). As pointed out above, we do not
have a mapping of the input to output in probability,

except to say that the leaf-nodes will, with probability
one, settle to the indicated limit-cycles. This settling
time is very fast and we did not measure it. It is reason-
able to see that by the necklace theory the ‘processes’
will ‘bounce’ away from each other as they travel
around the ring. So the entire settling time would be
on the order of the number of nodes times theRC time
constant.

The ‘settled’ limit-cycle is stable and this stabil-
ity is based on the necklace theory and the num-
ber of ‘processes’ in the loop. This is not depen-
dent on the specific chip. For example we constructed
the same type of loop, e.g. 10-node, with different
4093 packages and observed the same limit-cycle and
super-limit-cycle behavior. The only variation, which
we did not attempt to measure, could be the time vari-
ation betweenRC elements in the loop. This would
result in subtle variations in the settling time for the
system to enter a limit-cycle.

Since the limit-cycles are stable this suggests mem-
ory storage, where the memory states are the pulse
patterns in the Nv-ring. Large rings can support larger
numbers of stable limit-cycles and therefore a larger
number of memory states. Using the integrating be-
havior of coupled Nv-rings it is possible to generate
new and unusual stable patterns (Fig. 14) by construc-
tive and destructive interference of pulses within the
rings and it is possible to build networks of Boolean
computation circuits (Fig. 12).

Lastly, we have demonstrated that we can exploit
the threshold behavior outlined inEq. (4). Nv-rings
can be subjected to a underlying bias and lower voltage
signals or amplitude modulated signals can result in
firing of the neurons in-phase with the input signal or
the underlying bias. This and the integrating dynamics
are the same type of behavior attributed to spiking
neuron models.

Nv-rings have all the necessary properties to span
most computational functions, minimally, elegantly,
and robustly, and the field is wide-open for investiga-
tion.
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